PENERAPAN BOOTSTRAP DALAM METODE MINIMUM COVARIANCE DETERMINANT (MCD) DAN LEAST MEDIAN OF SQUARES (LMS) PADA ANALISIS REGRESI LINIER BERGANDA
نویسندگان
چکیده
منابع مشابه
Frequency of thalassemia carrier and Hb variant and the quality of stored donor blood
Metode: Penelitian ini menggunakan disain potong lintang dengan sampel berasal dari 138 donor darah. Dilakukan skrining talasemia dan Hb varian pada keseluruhan sampel, yang meliputi pemeriksaan hitung sel darah lengkap, analisis Hb metode HPLC dan analisis DNA untuk deteksi pembawa sifat talasemia α. Uji kualitas darah simpan dilakukan melalui penghitungan persen hemolisis sel darah merah pada...
متن کاملLeast Median of Squares Regression
Classical least squares regression consists of minimizing the sum of the squared residuals. Many authors have produced more robust versions of this estimator by replacing the square by something else, such as the absolute value. In this article a different approach is introduced in which the sum is replaced by the median of the squared residuals. The resulting estimator can resist the effect of...
متن کاملAnalisis dan Sintesis Sinyal Suara
Audio signal information with high quality would help the television audience to increase the perception of the information displayed. Transmission channel capacity will become limited, while the need of channel communication is increased. The research aim is coding the audio signal on the low bit rate for saving the channel communication usage for digital television broadcasting. The research ...
متن کاملLeast-Squares Covariance Matrix Adjustment
We consider the problem of finding the smallest adjustment to a given symmetric n × n matrix, as measured by the Euclidean or Frobenius norm, so that it satisfies some given linear equalities and inequalities, and in addition is positive semidefinite. This least-squares covariance adjustment problem is a convex optimization problem, and can be efficiently solved using standard methods when the ...
متن کاملCovariance shaping least-squares estimation
A new linear estimator is proposed, which we refer to as the covariance shaping least-squares (CSLS) estimator, for estimating a set of unknown deterministic parameters x observed through a known linear transformation H and corrupted by additive noise. The CSLS estimator is a biased estimator directed at improving the performance of the traditional least-squares (LS) estimator by choosing the e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: E-Jurnal Matematika
سال: 2016
ISSN: 2303-1751
DOI: 10.24843/mtk.2016.v05.i01.p116